Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Judith L. Kissick ${ }^{\text {a* }}$ and

 Douglas A. Keszler ${ }^{\text {b }}$${ }^{\text {a }}$ Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, England, and ${ }^{\mathbf{b}}$ Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331, USA

Correspondence e-mail:
j.l.kissick@reading.ac.uk

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{O}-\mathrm{B})=0.005 \AA$
R factor $=0.030$
$w R$ factor $=0.075$
Data-to-parameter ratio $=19.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

$\mathrm{Rb}_{2} \mathrm{Al}_{\mathbf{2}} \mathrm{B}_{\mathbf{2}} \mathrm{O}_{7}$

Rubidium aluminium borate, $\mathrm{Rb}_{2} \mathrm{Al}_{2} \mathrm{~B}_{2} \mathrm{O}_{7}$, is characterized by an association of AlO_{4} tetrahedra and BO_{3} triangles which form a complete three-dimensional aluminium borate framework. Rb^{+}cations occupy eight- and nine-coordinate positions within the three-dimensional channel system created by the framework.

Comment

The phase $\mathrm{Rb}_{2} \mathrm{Al}_{2} \mathrm{~B}_{2} \mathrm{O}_{7}$ is a new phase first described here, following a study of the system $M_{2} \mathrm{O}-\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{B}_{2} \mathrm{O}_{3}$, where $M=$ $\mathrm{Na}, \mathrm{K}, \mathrm{Rb} . \mathrm{Rb}_{2} \mathrm{Al}_{2} \mathrm{~B}_{2} \mathrm{O}_{7}$ crystallizes in the monoclinic space group $P 2_{1} / c$ and is characterized by a three-dimensional framework built from corner-sharing AlO_{4} tetrahedra and BO_{3} triangles surrounding a three-dimensional channel system in which the Rb atoms are located. Two crystallographically distinct Al atoms and two distinct B atoms are present in distorted tetrahedral AlO_{4} and trigonal-planar BO_{3} groups (Fig. 1). Each AlO_{4} group is connected to three BO_{3} groups and one AlO_{4} group to form an $\mathrm{Al}_{2} \mathrm{O}_{7}$ unit in which the $\mathrm{Al}-\mathrm{O}-\mathrm{Al}$ bond angle is $146.9(2)^{\circ}$.

The structure can be considered to be built up from tenmembered $\mathrm{Al}_{6} \mathrm{~B}_{4} \mathrm{O}_{10}$ rings, generated from corner-sharing AlO_{4} and BO_{3} polyhedra. The rings are linked in herring-bone fashion to form sheets in the $b c$ plane (Fig. 2). Adjacent sheets are connected in a staggered formation through fourmembered $\mathrm{Al}_{2} \mathrm{~B}_{2} \mathrm{O}_{4}$ rings and eight-membered $\mathrm{Al}_{4} \mathrm{~B}_{4} \mathrm{O}_{8}$ rings perpendicular to the b and c axes, respectively. Both crystallographically distinct $R b$ atoms have site symmetry $1 . \mathrm{Rb} 1$ is eight-coordinate within a coordination sphere of $3.5 \AA$ and has a calculated bond valence of +1.01 (1). Rb 2 is nine-coordinate within a $3.5 \AA$ coordination sphere and has a calculated bond

Figure 1
The local coordination of atoms in $\mathrm{Rb}_{2} \mathrm{Al}_{2} \mathrm{~B}_{2} \mathrm{O}_{7}$ (50% probability ellipsoids).

Received 15 August 2002

Accepted 30 August 2002 Online 6 September 2002

(a)

(b)

Figure 2
(a) View of $\mathrm{Rb}_{2} \mathrm{Al}_{2} \mathrm{~B}_{2} \mathrm{O}_{7}$ along [100], showing the 10 -membered $\mathrm{Al}_{6} \mathrm{~B}_{4} \mathrm{O}_{10}$ rings and the Rb atoms in the channels, and (b) schematic diagram showing the herring-bone arrangement of the 10 -membered rings in the $b c$ plane. Yellow spheres $=\mathrm{Rb}$ atoms, grey tetrahedra $=\mathrm{AlO}_{4}$, and brown triangles $=\mathrm{BO}_{3}($ ATOMS; Shape Software, 2002 $)$.
valence of +0.88 (1). Bond valences consistent with expected integral values are computed for each of the remaining atoms in the structure (Brese \& O'Keeffe, 1991).

The structure of the material $M_{2} \mathrm{Al}_{2} \mathrm{~B}_{2} \mathrm{O}_{7}$ depends on the nature of the M cation. Na, K and Rb analogues assume three different structures, even when synthesized under identical conditions. Both the Na and K analogues of $M_{2} \mathrm{Al}_{2} \mathrm{~B}_{2} \mathrm{O}_{7}$ crystallize in trigonal space groups [$P \overline{3} 1 c, a=4.8087$ (6), $c=$ 15.2734 (6) \AA and $Z=2$ (Chang, 1998; He et al., 2001); P321, $a=8.5657$ (9), $c=8.463$ (2) \AA and $Z=3$ (Hu et al., 1998)]. Their structures are characterized by six-membered $\mathrm{Al}_{3} \mathrm{~B}_{3} \mathrm{O}_{6}$ rings, built from AlO_{4} tetrahedra and BO_{3} triangles, that are linked together to form nearly planar sheets in the $a b$ plane. In the Na analogue, these sheets are connected in pairs through linear $\mathrm{Al}-\mathrm{O}-\mathrm{Al}$ bonds to form layers, which are linked through Na atoms to form a three-dimensional structure. In the K analogue, a three-dimensional $\mathrm{Al}-\mathrm{B}-\mathrm{O}$ framework is generated by $\mathrm{Al}-\mathrm{O}-\mathrm{Al}$ bonds between adjacent sheets and the K atoms are located in the space between these sheets.

We have found that up to 2.5% of the Rb atoms in $\mathrm{Rb}_{2} \mathrm{Al}_{2} \mathrm{~B}_{2} \mathrm{O}_{7}$ can be replaced by either Na or K and the threedimensional monoclinic structure is retained with essentially unchanged cell dimensions. Substitution of greater amounts of either Na or K causes the material to assume a structure more closely related to that of $\mathrm{K}_{2} \mathrm{Al}_{2} \mathrm{~B}_{2} \mathrm{O}_{7}$.

Experimental

Single crystals of $\mathrm{Rb}_{2} \mathrm{Al}_{2} \mathrm{~B}_{2} \mathrm{O}_{7}$ were grown in a covered Pt crucible by melting a mixture of $42.0 \mathrm{wt} \% \mathrm{Rb}_{2} \mathrm{CO}_{3}$ (99.8%, Alfa), $18.6 \mathrm{wt} \%$ $\mathrm{Al}_{2} \mathrm{O}_{3}\left(99.997 \%\right.$, Alfa), $13.3 \mathrm{wt} \% \mathrm{~B}_{2} \mathrm{O}_{3}$ (99.98%, Alfa) and $26.1 \mathrm{wt} \%$ $\mathrm{LiBO}_{2}(99.995 \%$, Alfa), which acts as a flux to ensure congruent melting. The melt was heated at 1373 K for 16 h to ensure homogeneity, it was then cooled to room temperature at a rate of $0.07 \mathrm{~K} \mathrm{~min}^{-1}$. Numerous crystals formed in the crucible and a clear colourless block was physically separated from the matrix for analysis.

Crystal data
$\mathrm{Rb}_{2} \mathrm{Al}_{2} \mathrm{~B}_{2} \mathrm{O}_{7}$
$M_{r}=358.52$
Monoclinic, $P 2_{1} / c$
$a=8.901$ (2) \AA
$b=7.539$ (1) \AA
$c=11.905$ (2) \AA
$\beta=103.97$ (1) ${ }^{\circ}$
$V=775.3(2) \AA^{3}$
$Z=4$

Data collection

Rigaku AFC-6R diffractometer $\omega / 2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.113, T_{\text {max }}=0.277$
4763 measured reflections
2281 independent reflections
1541 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$w R\left(F^{2}\right)=0.075$
$S=1.01$
2281 reflections
119 parameters
$D_{x}=3.072 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 21 reflections
$\theta=15-20^{\circ}$
$\mu=12.85 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colourless
$0.20 \times 0.15 \times 0.10 \mathrm{~mm}$
$R_{\text {int }}=0.058$
$\theta_{\text {max }}=30.1^{\circ}$
$h=-12 \rightarrow 12$
$k=-10 \rightarrow 10$
$l=-16 \rightarrow 16$
3 standard reflections every 400 reflections intensity decay: 0.6%

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0237 P)^{2}\right. \\
& \quad+0.6214 P] \\
& \quad \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.65 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.57 \mathrm{e} \AA^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.0097(5)
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

Rb1-O6	2.808 (2)	$\mathrm{Rb} 2-\mathrm{O} 4^{\text {viii }}$	3.455 (3)
$\mathrm{Rb} 1-\mathrm{O} 1^{\text {i }}$	2.946 (3)	Al1-O2	1.716 (3)
$\mathrm{Rb} 1-\mathrm{O} 3$	2.968 (3)	Al1- $\mathrm{O}^{\text {v }}$	1.746 (3)
$\mathrm{Rb} 1-\mathrm{O} 3{ }^{\text {ii }}$	3.048 (3)	All $-\mathrm{O} 4^{\text {ix }}$	1.749 (3)
Rb1-O1	3.056 (3)	$\mathrm{Al} 1-\mathrm{O} 5^{\text {i }}$	1.762 (3)
Rb1-O5	3.105 (3)	$\mathrm{Al} 2-\mathrm{O} 2$	1.725 (3)
$\mathrm{Rb} 1-\mathrm{O} 5^{\text {i }}$	3.126 (3)	Al2-O3	1.747 (3)
$\mathrm{Rb1}$-O7 ${ }^{\text {iii }}$	3.403 (3)	$\mathrm{Al} 2-\mathrm{O}^{\mathrm{x}}$	1.755 (3)
$\mathrm{Rb} 2-\mathrm{O} 7^{\text {iv }}$	2.924 (3)	$\mathrm{Al} 2-\mathrm{O} 1^{\mathrm{x}}$	1.764 (3)
$\mathrm{Rb} 2-\mathrm{O} 2^{\mathrm{v}}$	3.009 (3)	O3-B1	1.360 (5)
$\mathrm{Rb} 2-\mathrm{O} 2^{\text {vi }}$	3.014 (3)	O6-B1	1.380 (5)
Rb2-O6	3.043 (3)	$\mathrm{O} 7-\mathrm{B} 1^{\text {ii }}$	1.359 (5)
$\mathrm{Rb} 2-\mathrm{O} 4^{\text {vii }}$	3.086 (3)	$\mathrm{O} 1-\mathrm{B} 2^{\text {i }}$	1.370 (5)
$\mathrm{Rb} 2-\mathrm{O} 4$	3.200 (3)	O4-B2	1.366 (5)
$\mathrm{Rb} 2-\mathrm{O} 1^{\text {i }}$	3.297 (3)	O5-B2	1.360 (5)
$\mathrm{Rb} 2-\mathrm{O} 7^{v}$	3.405 (3)		
$\mathrm{O} 2-\mathrm{Al1}-\mathrm{O}^{\text {v }}$	112.30 (13)	$\mathrm{O} 3-\mathrm{Al} 2-\mathrm{O}^{\mathrm{x}}$	108.52 (13)
$\mathrm{O} 2-\mathrm{Al} 1-\mathrm{O} 4^{\text {ix }}$	109.32 (14)	$\mathrm{O} 7^{\mathrm{x}}-\mathrm{Al} 2-\mathrm{O} 1^{\mathrm{x}}$	107.89 (14)
$\mathrm{O} 6^{\mathrm{v}}-\mathrm{Al} 1-\mathrm{O} 4^{\text {ix }}$	105.08 (14)	$\mathrm{O} 7^{\mathrm{v}}-\mathrm{B} 1-\mathrm{O} 3$	122.8 (4)
$\mathrm{O} 2-\mathrm{Al} 1-\mathrm{O} 5^{\mathrm{i}}$	111.00 (15)	$\mathrm{O} 7^{\mathrm{v}}-\mathrm{B} 1-\mathrm{O} 6$	118.6 (3)
$\mathrm{O}^{\mathrm{v}}-\mathrm{Al} 1-\mathrm{O} 5^{\mathrm{i}}$	105.17 (14)	O3-B1-O6	118.5 (3)
$\mathrm{O} 4^{\mathrm{ix}}-\mathrm{Al} 1-\mathrm{O} 5^{\mathrm{i}}$	113.82 (14)	$\mathrm{O} 5-\mathrm{B} 2-\mathrm{O} 4$	123.0 (4)
$\mathrm{O} 2-\mathrm{Al} 2-\mathrm{O} 3$	109.87 (14)	$\mathrm{O} 5-\mathrm{B} 2-\mathrm{O} 1^{\text {i }}$	116.9 (3)
$\mathrm{O} 2-\mathrm{Al} 2-\mathrm{O}^{\mathrm{x}}$	109.16 (15)	$\mathrm{O} 4-\mathrm{B} 2-\mathrm{O} 1^{\text {i }}$	120.0 (3)
$\mathrm{O} 3-\mathrm{Al} 2-\mathrm{O}^{\text {x }}$	109.03 (14)	$\mathrm{Al} 1-\mathrm{O} 2-\mathrm{Al2}$	146.85 (18)
$\mathrm{O} 2-\mathrm{Al} 2-\mathrm{O} 1^{\mathrm{x}}$	112.30 (13)		
Symmetry codes: (i) $-x,-y, 1-z$; (ii) $-x, \frac{1}{2}+y, \frac{3}{2}-z$; (iii) $-x, 1-y, 1-z$; (iv) $1+x, \frac{1}{2}-y, \frac{1}{2}+z$; (v) $-x, y-\frac{1}{2}, \frac{3}{2}-z$; (vi) $1+x, y, z$; (vii) $x,-\frac{1}{2}-y, \frac{1}{2}+z$; (viii) $1-x, \frac{1}{2}+y, \frac{3}{2}-z$; (ix) $x-1, y, z$; (x) $x, \frac{1}{2}-y, \frac{1}{2}+z$.			

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1999); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN for Windows (Molecular Structure Corporation,1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ATOMS (Shape Software, 1998); software used to prepare material for publication: WinGX (Farrugia, 1999).

This work was supported by the Solid State Chemistry Program of the National Science Foundation. JLK would like to thank Dr A. M. Chippindale for helpful discussion about this work.

References

Brese, N. E. \& O’Keeffe, M. (1991). Acta Cryst. B47, 192-197.
Chang, K.-S. (1998). PhD dissertation, Oregon State University, USA.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
He, M., Chen, X. L., Zhou, T., Hu, B. Q., Xu, Y. P. \& Xu, T. (2001). J. Alloys Compds, 327, 210-214.

Hu, Z. G., Higashiyama, T., Yoshimura, M., Yap, Y. K., Mori, Y. \& Sasaki, T. (1998). Jpn. J. Appl. Phys. Part 2 Lett. 32, L1093-1094.

Molecular Structure Corporation (1997). TEXSAN for Windows. Version 1.0. MSC, 9009 New Trails Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1999). MSC/AFC Diffractometer Control Software. MSC, 9009 New Trails Drive, The Woodlands, TX 77381 USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Shape Software (1998). ATOMS. Shape Software, 521 Hidden Valley Rd, Kingsport, TN 37663, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

